
Team Number: 1

Team Members:
Bolu Adubi
Alex Anderson
Caleb Bennetts
Matrim Besch
Ben Lottes

Project Name: TBD
SLI (Sign Language Interpreter)
SLAI (Sign Language AI)
VisualLanguages
Sign Language Tokenizer
Interpreting Signs

Project Synopsis:
Online application that recognizes sign language signs and interprets to text and vice versa for
communication between people

Architecture:
To our knowledge there is not a currently available application that successfully translates

sign language to complete sentences or phrases. From our research, the only thing that is
available is being able to recognize individual signs in sign language using machine learning.
Our goal is to design an application that allows a user to translate a sign or group of signs into a
complete readable thought.  One of the most important factors in the implementation of our
translator software is the machine learning model. This is a crucial aspect of our project because
the machine learning model will define how our translator learns and improves. Our group
envisions a model that can perpetually improve provided that input is continuously received by
the model. The program will primarily be written in Python, this decision was made due to its
compatibility with various machine learning tools and libraries that will be invaluable to our
project. Python also allows us to quickly make a prototype since it is a higher level language than
something like C or C++. Our frontend will likely be made with Javascript, more specifically
React since it is purpose built to create user interfaces quickly and easily. Our program will
function by taking in video input of the user doing a sign or set of signs. Each pixel or pixel
group represents an area our program will try to match with the correct sign. Our software will
search through all of the available data to find the most accurate match. Illustration two below
demonstrates our idea of how the neural network will process input. We will use OpenCV to
facilitate video capture and filtering of the video input to reduce background noise and isolate
important features/elements of the video stream. We will also use Tensorflow to aid with the



machine learning necessary to determine what sign is being shown in the video feed and record
that information in our program to be later translated. We plan on tokenizing the English
language by, firstly, mapping letters and numbers to their respective signs. This will consist of
understanding the structure and syntax of sign language and producing an advanced machine
learning model that can precisely and accurately produce the correct word, letter, or number in
English. Sign language has many subtle gestures that can be difficult to track, so we will need to
ask the help of a professional to get a better grasp of the exact placement of certain parts of the
hand or arms. Once our program is trained to recognize each individual letter and number we
will then move to training it to recognize popular words, starting with the 50 most popular words
in the English language. After letters, numbers, and popular words, we will tokenize popular
phrases that can be articulated with a single sign.  We can use these “tokens” to form an English
sentence. To do this, we plan on using our knowledge of compilers to form a pseudo-compiler
from Sign-language to English. We can essentially use the tokens to build up a parse tree that has
leaves forming a complete sentence. One problem we will have to overcome with this approach
is that sign language sometimes leaves out various supporting words that are explicitly spoken in
English. We will have to find a way to identify when these words have been excluded and
automatically add them into our sentence. Since the structure of sign language and English is
slightly different like the example previously given along with many others, we will need to
consult experts in both sign language and English to better understand what will be necessary to
make an accurate and faithful translation. If we can accomplish basic translations and we still
have time left in the project, we will train our translator by giving it more sign language data and
more complicated Sign-Language sentences and phrases. Our group will continue to add to our
database of signs until our program can accurately tokenize any single sign we input. To increase
the efficiency of this process we can simply feed the inputs we test the software with into the
training dataset. Illustration three below demonstrates this idea of adding to the data by having a
function that turns images into network ready data. Eventually, our group will add features to our
user interface so that the overall user experience is as positive as we can make it. For example,
along with the output in text we can display the original input to the user so that it is clear what is
being translated. To further better the user experience we may include features such as sign
correction. A sign correction feature would involve giving the user our best guess of what they
were trying to sign and then offering them a video tutorial of how to properly do the sign. This
can be implemented through our machine learning model as our model can detect when signs are
invalid. However, a feature like this would require extensive training. Another feature we hope to
implement is being able to translate written English text into Sign-Language. This type of feature
would allow the user to type an english phrase into a text box, and then our program will present
images or videos of the correct signs to say the phrase in sign language. A tool like this can be as
simple as a search bar that pulls up various sign images or videos based on keywords in the
search. To implement this effectively we will pull the search results from our database of signs
and present them to the user. Another potential feature that would offer an additional layer of
functionality is a text to speech option. This type of feature can be added fairly easily with



existing libraries such as gtts. After the user signs their input and receives the output in text
format we hope they can select an option to have this sentence read aloud to them. Our
application would be useful both for learning and practicing sign language as well as for public
speakers using sign language. If our product was developed long term it could be applied to a
language learning app similar to Duolingo, or even built into video conferencing apps like Zoom.

Illustration 1: Shown above is the overall procedure and functionality our program should have.

Illustration 2: Here we demonstrate how our program will take input and match this input with
its corresponding English token based on the best guess.



Illustration 3: This diagram represents the flow of data throughout our program's execution.


